LeetCode 530.二叉搜索树的最小绝对差

分析1.0

二叉搜索树,中序遍历形成一个升序数组,节点差最小值一定在中序遍历两个相邻节点产生

✡✡✡ 双指针思想在树遍历中的应用

class Solution {
    TreeNode pre;// 记录上一个遍历的结点
    int result = Integer.MAX_VALUE;
    public int getMinimumDifference(TreeNode root) {
       if(root==null)return 0;
       traversal(root);
       return result;
    }
    public void traversal(TreeNode root){
        if(root==null)return;
        //左
        traversal(root.left);
        //中
        if(pre!=null){
            result = Math.min(result,root.val-pre.val);
        }
        pre = root;
        //右
        traversal(root.right);
    }
}

LeetCode 501.二叉搜索树中的众数

分析1.0

在修改了定义的二叉搜索树中找元素出现最多的节点值并返回那个

遍历 采用Map<节点值,节点个数>, 再遍历一次取value最大值

分析2.0

借助搜索特性 统计每个相同val节点个数

if (pre == NULL) { // 第一个节点
    count = 1; // 频率为1
} else if (pre->val == cur->val) { // 与前一个节点数值相同
    count++;
} else { // 与前一个节点数值不同
    count = 1;
}
pre = cur; // 更新上一个节点
class Solution {
    ArrayList<Integer> resList;
    int maxCount;
    int count;
    TreeNode pre;

    public int[] findMode(TreeNode root) {
        resList = new ArrayList<>();
        maxCount = 0;
        count = 0;
        pre = null;
        findMode1(root);
        int[] res = new int[resList.size()];
        for (int i = 0; i < resList.size(); i++) {
            res[i] = resList.get(i);
        }
        return res;
    }

    public void findMode1(TreeNode root) {
        if (root == null) {
            return;
        }
        findMode1(root.left);

        int rootValue = root.val;
        // 计数
        if (pre == null || rootValue != pre.val) {
            count = 1;
        } else {
            count++;
        }
        // 更新结果以及maxCount
        if (count > maxCount) {
            resList.clear();
            resList.add(rootValue);
            maxCount = count;
        } else if (count == maxCount) {
            resList.add(rootValue);
        }
        pre = root;

        findMode1(root.right);
    }
}

LeetCode 二叉树的最近公共祖先  

分析1.0

向上传递的是包含 p 或 p 或 p和q的共同根节点

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) { // 递归结束条件
            return root;
        }

        // 后序遍历
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        TreeNode right = lowestCommonAncestor(root.right, p, q);

        if(left == null && right == null) { // 若未找到节点 p 或 q
            return null;
        }else if(left == null && right != null) { // 若找到一个节点
            return right;
        }else if(left != null && right == null) { // 若找到一个节点
            return left;
        }else { // 若找到两个节点
            return root;
        }
    }
}

总结

  1. 搜索一条边的写法:

    if (递归函数(root->left)) return ;
    
    if (递归函数(root->right)) return ;

    搜索整个树写法:

    left = 递归函数(root->left);  // 左
    right = 递归函数(root->right); // 右
    left与right的逻辑处理;         // 中 

常用变量名增量更新

size、val、ans、cnt、cur、pre、next、left、right、index、gap、tar、res、src、len、start、end、flag、ch