一、责任链模式(职责链模式)

模式的定义与特点

责任链(Chain of Responsibility)模式的定义:为了避免请求发送者与多个请求处理者耦合在一起,于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链;当有请求发生时,可将请求沿着这条链传递,直到有对象处理它为止。

在责任链模式中,客户只需要将请求发送到责任链上即可,无须关心请求的处理细节和请求的传递过程,请求会自动进行传递。所以责任链将请求的发送者和请求的处理者解耦了。

主要优点

1.降低了对象之间的耦合度。该模式使得一个对象无须知道到底是哪一个对象处理其请求以及链的结构,发送者和接收者也无须拥有对方的明确信息。
2.增强了系统的可扩展性。可以根据需要增加新的请求处理类,满足开闭原则。
3.增强了给对象指派职责的灵活性。当工作流程发生变化,可以动态地改变链内的成员或者调动它们的次序,也可动态地新增或者删除责任。
4.责任链简化了对象之间的连接。每个对象只需保持一个指向其后继者的引用,不需保持其他所有处理者的引用,这避免了使用众多的 if 或者 if···else 语句。
5.责任分担。每个类只需要处理自己该处理的工作,不该处理的传递给下一个对象完成,明确各类的责任范围,符合类的单一职责原则。

主要缺点。

1.不能保证每个请求一定被处理。由于一个请求没有明确的接收者,所以不能保证它一定会被处理,该请求可能一直传到链的末端都得不到处理。
2.对比较长的职责链,请求的处理可能涉及多个处理对象,系统性能将受到一定影响。
3.职责链建立的合理性要靠客户端来保证,增加了客户端的复杂性,可能会由于职责链的错误设置而导致系统出错,如可能会造成循环调用。

模式的结构与实现

通常情况下,可以通过数据链表来实现职责链模式的数据结构。

1. 模式的结构

职责链模式主要包含以下角色。
1.抽象处理者(Handler)角色:定义一个处理请求的接口,包含抽象处理方法和一个后继连接。
2.具体处理者(Concrete Handler)角色:实现抽象处理者的处理方法,判断能否处理本次请求,如果可以处理请求则处理,否则将该请求转给它的后继者。
3. 客户类(Client)角色:创建处理链,并向链头的具体处理者对象提交请求,它不关心处理细节和请求的传递过程。

责任链模式的本质是解耦请求与处理,让请求在处理链中能进行传递与被处理;理解责任链模式应当理解其模式,而不是其具体实现。责任链模式的独到之处是将其节点处理者组合成了链式结构,并允许节点自身决定是否进行请求处理或转发,相当于让请求流动起来。

其结构图如图 1 所示。客户端可按图 2 所示设置责任链。
image

             图1 责任链模式的结构图

image

		图2 责任链
2. 模式的实现
main
package chainOfResponsibility;

public class ChainOfResponsibilityPattern {
    public static void main(String[] args) {
        //组装责任链
        Handler handler1 = new ConcreteHandler1();
        Handler handler2 = new ConcreteHandler2();
        handler1.setNext(handler2);
        //提交请求
        handler1.handleRequest("two");
    }
}
抽象处理者角色Handler

//抽象处理者角色
abstract class Handler {
    private Handler next;

    public void setNext(Handler next) {
        this.next = next;
    }

    public Handler getNext() {
        return next;
    }

    //处理请求的方法
    public abstract void handleRequest(String request);
}


具体处理者角色ConcreteHandler1

//具体处理者角色1
class ConcreteHandler1 extends Handler {
    public void handleRequest(String request) {
        if (request.equals("one")) {
            System.out.println("具体处理者1负责处理该请求!");
        } else {
            if (getNext() != null) {
                getNext().handleRequest(request);
            } else {
                System.out.println("没有人处理该请求!");
            }
        }
    }
}

具体处理者角色ConcreteHandler2
//具体处理者角色2
class ConcreteHandler2 extends Handler {
    public void handleRequest(String request) {
        if (request.equals("two")) {
            System.out.println("具体处理者2负责处理该请求!");
        } else {
            if (getNext() != null) {
                getNext().handleRequest(request);
            } else {
                System.out.println("没有人处理该请求!");
            }
        }
    }
}

程序运行结果如下:
具体处理者2负责处理该请求!

模式的应用场景

前边已经讲述了关于责任链模式的结构与特点,下面介绍其应用场景,责任链模式通常在以下几种情况使用。
1.多个对象可以处理一个请求,但具体由哪个对象处理该请求在运行时自动确定。
2.可动态指定一组对象处理请求,或添加新的处理者。
3.需要在不明确指定请求处理者的情况下,向多个处理者中的一个提交请求。

模式的扩展

职责链模式存在以下两种情况。
1.纯的职责链模式:一个请求必须被某一个处理者对象所接收,且一个具体处理者对某个请求的处理只能采用以下两种行为之一:自己处理(承担责任);把责任推给下家处理。
2.不纯的职责链模式:允许出现某一个具体处理者对象在承担了请求的一部分责任后又将剩余的责任传给下家的情况,且一个请求可以最终不被任何接收端对象所接收。

二、解释器模式

模式的定义与特点

解释器(Interpreter)模式的定义:给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的实例。这种模式实现了文法表达式处理的接口,该接口解释一个特定的上下文。

这里提到的文法和句子的概念同编译原理中的描述相同,“文法”指语言的语法规则,而“句子”是语言集中的元素。例如,汉语中的句子有很多,“我是中国人”是其中的一个句子,可以用一棵语法树来直观地描述语言中的句子。

主要优点

1.扩展性好。由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法。
2.容易实现。在语法树中的每个表达式节点类都是相似的,所以实现其文法较为容易。

主要缺点。

1.执行效率较低。解释器模式中通常使用大量的循环和递归调用,当要解释的句子较复杂时,其运行速度很慢,且代码的调试过程也比较麻烦。
2.会引起类膨胀。解释器模式中的每条规则至少需要定义一个类,当包含的文法规则很多时,类的个数将急剧增加,导致系统难以管理与维护。
3.可应用的场景比较少。在软件开发中,需要定义语言文法的应用实例非常少,所以这种模式很少被使用到。

模式的结构与实现

解释器模式常用于对简单语言的编译或分析实例中,为了掌握好它的结构与实现,必须先了解编译原理中的“文法、句子、语法树”等相关概念。

1) 文法

文法是用于描述语言的语法结构的形式规则。没有规矩不成方圆,例如,有些人认为完美爱情的准则是“相互吸引、感情专一、任何一方都没有恋爱经历”,虽然最后一条准则较苛刻,但任何事情都要有规则,语言也一样,不管它是机器语言还是自然语言,都有它自己的文法规则。例如,中文中的“句子”的文法如下。
〈句子〉::=〈主语〉〈谓语〉〈宾语〉
〈主语〉::=〈代词〉|〈名词〉
〈谓语〉::=〈动词〉
〈宾语〉::=〈代词〉|〈名词〉
〈代词〉你|我|他
〈名词〉7大学生I筱霞I英语
〈动词〉::=是|学习

注:这里的符号“::=”表示“定义为”的意思,用“〈”和“〉”括住的是非终结符,没有括住的是终结符。

2) 句子

句子是语言的基本单位,是语言集中的一个元素,它由终结符构成,能由“文法”推导出。例如,上述文法可以推出“我是大学生”,所以它是句子。

3) 语法树

语法树是句子结构的一种树型表示,它代表了句子的推导结果,它有利于理解句子语法结构的层次。图 1 所示是“我是大学生”的语法树。
image

          图1 句子“我是大学生”的语法树

有了以上基础知识,现在来介绍解释器模式的结构就简单了。解释器模式的结构与组合模式相似,不过其包含的组成元素比组合模式多,而且组合模式是对象结构型模式,而解释器模式是类行为型模式。

1. 模式的结构

解释器模式包含以下主要角色。
1.抽象表达式(Abstract Expression)角色:定义解释器的接口,约定解释器的解释操作,主要包含解释方法 interpret()。
2.终结符表达式(Terminal Expression)角色:是抽象表达式的子类,用来实现文法中与终结符相关的操作,文法中的每一个终结符都有一个具体终结表达式与之相对应。
3.非终结符表达式(Nonterminal Expression)角色:也是抽象表达式的子类,用来实现文法中与非终结符相关的操作,文法中的每条规则都对应于一个非终结符表达式。
4.环境(Context)角色:通常包含各个解释器需要的数据或是公共的功能,一般用来传递被所有解释器共享的数据,后面的解释器可以从这里获取这些值。
5.客户端(Client):主要任务是将需要分析的句子或表达式转换成使用解释器对象描述的抽象语法树,然后调用解释器的解释方法,当然也可以通过环境角色间接访问解释器的解释方法。

解释器模式的结构图如图 2 所示。
image

        图2 解释器模式的结构图

2. 模式的实现

解释器模式实现的关键是定义文法规则、设计终结符类与非终结符类、画出结构图,必要时构建语法树,其代码结构如下:

抽象表达式类AbstractExpression
package net.biancheng.c.interpreter;

//抽象表达式类
interface AbstractExpression {
    public void interpret(String info);    //解释方法
}
终结符表达式类TerminalExpression
//终结符表达式类
class TerminalExpression implements AbstractExpression {
    public void interpret(String info) {
        //对终结符表达式的处理
    }
}
非终结符表达式类NonterminalExpression
//非终结符表达式类
class NonterminalExpression implements AbstractExpression {
    private AbstractExpression exp1;
    private AbstractExpression exp2;

    public void interpret(String info) {
        //非对终结符表达式的处理
    }
}

模式的应用场景

前面介绍了解释器模式的结构与特点,下面分析它的应用场景。
1.当语言的文法较为简单,且执行效率不是关键问题时。
2.当问题重复出现,且可以用一种简单的语言来进行表达时。
3.当一个语言需要解释执行,并且语言中的句子可以表示为一个抽象语法树的时候,如 XML 文档解释。

注意:解释器模式在实际的软件开发中使用比较少,因为它会引起效率、性能以及维护等问题。如果碰到对表达式的解释,在 Java 中可以用 Expression4J 或 Jep 等来设计。

模式的扩展

在项目开发中,如果要对数据表达式进行分析与计算,无须再用解释器模式进行设计了,Java 提供了以下强大的数学公式解析器:Expression4J、MESP(Math Expression String Parser) 和 Jep 等,它们可以解释一些复杂的文法,功能强大,使用简单。

环境类Context
//环境类
class Context {
    private AbstractExpression exp;

    public Context() {
        //数据初始化
    }

    public void operation(String info) {
        //调用相关表达式类的解释方法
    }
}

现在以 Jep 为例来介绍该工具包的使用方法。Jep 是 Java expression parser 的简称,即 Java 表达式分析器,它是一个用来转换和计算数学表达式的 Java 库。通过这个程序库,用户可以以字符串的形式输入一个任意的公式,然后快速地计算出其结果。而且 Jep 支持用户自定义变量、常量和函数,它包括许多常用的数学函数和常量。

使用前先下载 Jep 压缩包,解压后,将 jep-x.x.x.jar 文件移到选择的目录中,在 Eclipse 的“Java 构建路径”对话框的“库”选项卡中选择“添加外部 JAR(X)...”,将该 Jep 包添加项目中后即可使用其中的类库。

下面以计算存款利息为例来介绍。存款利息的计算公式是:本金x利率x时间=利息,其相关代码如下:

JepDemo
package net.biancheng.c.interpreter;

import com.singularsys.jep.*;

public class JepDemo {
    public static void main(String[] args) throws JepException {
        Jep jep = new Jep();
        //定义要计算的数据表达式
        String 存款利息 = "本金*利率*时间";
        //给相关变量赋值
        jep.addVariable("本金", 10000);
        jep.addVariable("利率", 0.038);
        jep.addVariable("时间", 2);
        jep.parse(存款利息);    //解析表达式
        Object accrual = jep.evaluate();    //计算
        System.out.println("存款利息:" + accrual);
    }
}

程序运行结果如下:
存款利息:760.0