数组:内存空间连续,数据类型统一,下标从0开始

二分查找

704

class Solution {
    public int search(int[] nums, int target) {
        // 方法一:暴力解法
        // for(int i = 0; i < nums.length; i++){
        //     if(nums[i] == target){//找到目标值
        //         return i;
        //     }
        // }
        // return -1;
        // 方法二:二分查找(元素有序且无重复元素),使用迭代,执行速度快,但是内存消耗大
        // return binarySearch(nums, target, 0, nums.length-1); 
        // 方法三:二分查找,统一使用左闭右闭区间
        // 上来先处理边界条件
        if(target < nums[0] || target > nums[nums.length - 1]){
            return -1;
        }
        int left = 0;
        int right = nums.length - 1;//右闭区间
        int mid = (left + right) >> 1;
        while(left <= right){//因为取得数组区间左右都是闭的,所以取等号的时候也能满足条件,还不需要退出循环
            if(target == nums[mid]){
                return mid;
            }else if(target < nums[mid]){
                right = mid -1;//往左区间缩
            }else{
                left = mid +1;
            }
            mid = (left + right) >> 1;
        }
        return -1;
    }
    // public int binarySearch(int[] nums, int target, int start, int end){
    //     int mid = (start+end)/2;
    //     int find = -1;
    //     if(start > end){//没有找到
    //         return -1;
    //     }
    //     if(target == nums[mid]){
    //         return mid;
    //     }else if(target < nums[mid]){
    //         find = binarySearch(nums, target, start, mid-1);
    //     }else{
    //         find = binarySearch(nums, target, mid+1, end);
    //     }
    //     return find;
    // }
}

搜索插入位置

35

class Solution {
    public int searchInsert(int[] nums, int target) {
        // 有序数组,考虑用二分查找
        int left = 0;
        int right = nums.length - 1;
        int mid = (left + right) >> 1;
        if(target < nums[left]){
            return left;
        }
        if(target > nums[right]){
            return right + 1;
        }
        while(left <= right){
            if(target == nums[mid]){
                return mid;
            }else if(target < nums[mid]){
                right = mid -1;
            }else{
                left = mid + 1;
            }
            mid = (left + right) >> 1;
        }
        return left;//找不到,返回需要插入的位置
    }
}

在排序数组中查找元素的第一个和最后一个位置

34

class Solution {
    public int[] searchRange(int[] nums, int target) {
        // 非递减说明是升序的,但可以有重复元素
        int[] arr = {-1, -1};
        if(nums.length == 0){
            return arr;
        }
        int left = 0;
        int right = nums.length - 1;
        int mid = (left + right) >> 1;
        if(target < nums[left] || target > nums[right]){
            return arr;//边界值
        }
        int leftPoint;//目标数组的开始位置
        int rightPoint;//目标数组的结束位置
        while(left <= right){
            if(target == nums[mid]){
                leftPoint = mid;
                rightPoint = mid;
                while(leftPoint >= 0 && target == nums[leftPoint]){
                    arr[0] = leftPoint;
                    leftPoint--;//向左寻找重复元素
                }
                while(rightPoint <= (nums.length - 1) && target == nums[rightPoint]){
                    arr[1] = rightPoint;
                    rightPoint++;//向右寻找重复元素
                }
                return arr;//返回找到的目标值的位置
            }else if(target < nums[mid]){
                right = mid - 1;
            }else{
                left = mid + 1;
            }
            mid = (left + right) >> 1;
        }
        return arr;//没有找到
    }
}

69、x的平方根

class Solution {
    public int mySqrt(int x) {
        // 使用二分查找
        int left = 0;
        int right = x;
        int mid = (left + right) / 2;
        while(left <= right){
            if((long)mid * mid < x){
                left = mid + 1;
            }else if((long)mid * mid > x){
                right = mid - 1;
            }else{
                return mid;
            }
            mid  = (left + right) / 2;
        }
        return right;
    }
}

367、有效的完全平方数

class Solution {
    public boolean isPerfectSquare(int num) {
        int left = 0, right = num;
        while(left <= right){
            int mid = (left + right) >> 1;
            if((long) mid * mid == num){
                return true;
            }else if((long) mid * mid < num){
                left = mid + 1;
            }else{
                right = mid - 1;
            }
        }
        return false;
    }
}

移除元素

27

class Solution {
    public int removeElement(int[] nums, int val) {
// 原地移除,所有元素
// 数组内元素可以乱序
        // 方法一:暴力解法,不推荐,时间复杂度O(n^2)
        // int right = nums.length;//目标数组长度,右指针
        // for(int i = 0; i < right; i++){
        //     if(val == nums[i]){
        //         right--;//找到目标数值,目标数长度减一,右指针左移
        //         for(int j = i; j < right; j++){
        //             nums[j] = nums[j + 1];//数组整体左移一位(数组元素不能删除,只能覆盖)
        //         }
        //         i--;//左指针左移
        //     }
        // }
        // return right;
        // 方法二:快慢指针,时间复杂度O(n)
        // int solwPoint = 0;
        // for(int fastPoint = 0; fastPoint < nums.length; fastPoint++){
        //     if(nums[fastPoint] != val){
        //         nums[solwPoint] = nums[fastPoint];
        //         solwPoint++;
        //     }
        // }
        // return solwPoint;
        // 方法三:注意元素的顺序可以改变,使用相向指针,时间复杂度O(n)
        int rightPoint = nums.length - 1;
        int leftPoint = 0;
        while(rightPoint >= 0 && nums[rightPoint] == val){
            rightPoint--;
        }
        while(leftPoint <= rightPoint){
            if(nums[leftPoint] == val){
                nums[leftPoint] = nums[rightPoint--];
            }
            leftPoint++;
            while(rightPoint >= 0 && nums[rightPoint] == val){
                rightPoint--;
            }
        }
        return leftPoint;
    }
}

26、删除排序数组中的重复项

class Solution {
    public int removeDuplicates(int[] nums) {
// 相对顺序一致,所以不能使用相向指针。
// 考虑使用快慢指针
        if(nums.length == 1){
            return 1;
        }
        int slowPoint = 0;
        for(int fastPoint = 1; fastPoint < nums.length; fastPoint++){
            if(nums[slowPoint] != nums[fastPoint]){
                nums[++slowPoint] = nums[fastPoint];
            }
        }
        return slowPoint + 1;
    }
}

283、移动零

class Solution {
    public void moveZeroes(int[] nums) {
// 要保持相对顺序,不能用相向指针
        int slowPoint = 0;
        for(int fastPoint = 0; fastPoint < nums.length; fastPoint++){
            if(nums[fastPoint] != 0){
                nums[slowPoint++] = nums[fastPoint];//所有非零元素移到左边
            }
        }
        for(; slowPoint < nums.length; slowPoint++){
            nums[slowPoint] = 0;//把数组末尾置零
        }
    }
}

844、比较含退格的字符串

class Solution {
    public boolean backspaceCompare(String s, String t) {
        // 从前往后的话不确定下一位是不是"#",当前位需不需要消除,所以采用从后往前的方式
        int countS = 0;//记录s中"#"的数量
        int countT = 0;//记录t中"#"的数量
        int rightS = s.length() - 1;
        int rightT = t.length() - 1;
        while(true){
            while(rightS >= 0){
                if(s.charAt(rightS) == '#'){
                    countS++;
                }else{
                    if(countS > 0){
                        countS--;
                    }else{
                        break;
                    }
                }
                rightS--;
            }
            while(rightT >= 0){
                if(t.charAt(rightT) == '#'){
                countT++;
                }else{
                    if(countT > 0){
                        countT--;
                    }else{
                        break;
                    }
                }
                rightT--;
            }
            if(rightT < 0 || rightS < 0){
                break;
            }
            if(s.charAt(rightS) != t.charAt(rightT)){
                return false;
            }
            rightS--;
            rightT--;
        }
        if(rightS == -1 && rightT == -1){
            return true;
        }
        return false;
    }
}

有序数组的平方

977

class Solution {
    public int[] sortedSquares(int[] nums) {
// 用相向的双指针
        int[] arr = new int[nums.length];
        int index = arr.length - 1;
        int leftPoint = 0;
        int rightPoint = nums.length - 1;
        while(leftPoint <= rightPoint){
            if(Math.pow(nums[leftPoint], 2) > Math.pow(nums[rightPoint], 2)){
                arr[index--] = (int)Math.pow(nums[leftPoint], 2);
                leftPoint++;
            }else{
                arr[index--] = (int)Math.pow(nums[rightPoint], 2);
                rightPoint--;
            }
        }
        return arr;
    }
}

长度最小的子数组

209

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
// 注意是连续子数组
        // 使用滑动窗口,实际上还是双指针
        int left = 0;
        int sum = 0;
        int result = Integer.MAX_VALUE;
        for(int right = 0; right < nums.length; right++){//for循环固定的是终止位置
            sum += nums[right];
            while(sum >= target){
                result = Math.min(result, right - left + 1);//记录最小的子数组
                sum -= nums[left++];
            }
        }
        return result == Integer.MAX_VALUE ? 0 : result;
    }
}

904、水果成篮

class Solution {
    public int totalFruit(int[] fruits) {
// 此题也可以使用滑动窗口
        int maxNumber = 0;
        int left = 0;
        Map<Integer, Integer> map = new HashMap<>();//用哈希表记录被使用的篮子数量,以及每个篮子中的水果数量
        for(int right = 0; right < fruits.length; right++){
            map.put(fruits[right], map.getOrDefault(fruits[right], 0) + 1);//往篮子里面放水果
            while(map.size() > 2){//放进去的水果不符合水果类型
                map.put(fruits[left], map.get(fruits[left]) - 1);
                if(map.get(fruits[left]) == 0){
                    map.remove(fruits[left]);
                }
                left++;
            }
            maxNumber = Math.max(maxNumber, right - left + 1);
        }
        return maxNumber;
    }
}

螺旋矩阵 II

59

class Solution {
    public int[][] generateMatrix(int n) {
        // 方法一:直接按序输出
        int[][] arr = new int[n][n];
         int top = 0;
         int buttom = n - 1;
         int left = 0;
         int right = n - 1;;
         int index = 1;
         while(left <= right && top <= buttom && index <= n*n){
             for(int i = left; i <= right; i++){
                 arr[top][i] = index++;
             }
             top++;
             for(int i = top; i <= buttom; i++){
                 arr[i][right] = index++;
             }
             right--;
             for(int i = right; i >= left; i--){
                 arr[buttom][i] = index++;
             }
             buttom--;
             for(int i = buttom; i >= top; i--){
                 arr[i][left] = index++;
             }
             left++;
         }
         return arr;
    }
}

54

class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        int top = 0;
        int buttom = matrix.length - 1;
        int left = 0;
        int right = matrix[0].length - 1;
        List<Integer> list = new ArrayList<Integer>();
        while(left <= right && top <= buttom){
            for(int i = left; i <= right; i++){
                if(top <= buttom)
                list.add(matrix[top][i]);
            }
            top++;
            for(int i = top; i <= buttom; i++){
                if(left <= right)
                list.add(matrix[i][right]);
            }
            right--;
            for(int i = right; i >= left; i--){
                if(top <= buttom)
                list.add(matrix[buttom][i]);
            }
            buttom--;
            for(int i = buttom; i >= top; i--){
                if(left <= right)
                list.add(matrix[i][left]);
            }
            left++;
        }
        return list;
    }
}

29 、顺时针打印矩阵

class Solution {
    public int[] spiralOrder(int[][] matrix) {
        if(matrix.length == 0){
            return new int[0];
        }
        int top = 0;
        int buttom = matrix.length - 1;
        int left = 0;
        int right = matrix[0].length - 1;
        int[] arr = new int[matrix.length*matrix[0].length];
        int index = 0;
        while(left <= right && top <= buttom){
            for(int i = left; i <= right; i++){
                if(top <= buttom)
                arr[index++] = matrix[top][i];
            }
            top++;
            for(int i = top; i <= buttom; i++){
                if(left <= right)
                arr[index++] = matrix[i][right];
            }
            right--;
            for(int i = right; i >= left; i--){
                if(top <= buttom)
                arr[index++] = matrix[buttom][i];
            }
            buttom--;
            for(int i = buttom; i >= top; i--){
                if(left <= right)
                arr[index++] = matrix[i][left];
            }
            left++;
        }
        return arr;
    }
}

链表:插入快,查询慢,存储不连续
分为单链表,双链表和循环链表
在链表中使用虚拟头结点,可以减少增删改查中对头结点的特殊处理

移除链表元素

203

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode removeElements(ListNode head, int val) {
// 方法一:设置虚节点方式,推荐方式
        ListNode dummy = new ListNode(-1,head);
        ListNode pre = dummy;
        ListNode cur = head;
        while(cur != null){
            if(cur.val == val){
                pre.next = cur.next;
            }else{
                pre = cur;
            }
            cur = cur.next;
        }
        return dummy.next;
        // 方法二:时间复杂度O(n),空间复杂度O(1)
        if(head == null){//空链表的情况
            return head;
        }
        while(head != null && head.val == val){//头结点为val的情况
            head = head.next;
        }
        ListNode temp = head;
        while(temp != null && temp.next != null){
            while(temp != null && temp.next != null && temp.next.val == val){
                if(temp.next.next != null){
                    temp.next = temp.next.next;
                }else{//最后一个节点为val的情况
                    temp.next = null;
                }
                
            }
            temp = temp.next;
        }
        return head;
    }
}

707、设计链表


class MyLinkedList {
    int size;
    ListNode head;
    ListNode tail;
// 初始化链表,构建虚拟的头结点和尾节点
    public MyLinkedList() {
        size = 0;
        head = new ListNode(0);
        tail = new ListNode(0);
        head.next = tail;
        tail.prev = head;
    }
    public int get(int index) {
        ListNode cur = head;
        if(index > size - 1 || index < 0){
            return -1;
        }
        while(index >= 0){
            cur = cur.next;
            index--;
        }
        return cur.val;
    }
    
    public void addAtHead(int val) {
        addAtIndex(0,val);

    }
    
    public void addAtTail(int val) {
        addAtIndex(size,val);
    }
    
    public void addAtIndex(int index, int val) {
        if(index > size){
            return;
        }
        if(index < 0 ){
            index = 0;
        }
        size++;
        ListNode temp = new ListNode(val);
        ListNode cur = head;
        while(index > 0){
            cur = cur.next;
            index--;
        }
        temp.next = cur.next;
        cur.next = temp; 
        temp.prev = cur;
    }
    
    public void deleteAtIndex(int index) {
        ListNode cur = head;
        if(index > size - 1 || index < 0){
            return;
        }
        while(index > 0){
            cur = cur.next;
            index--;
        }
        cur.next = cur.next.next;
        size--;
    }
}
class ListNode {
    int val;
    ListNode next;
    ListNode prev;

    public ListNode(int val) {
        this.val = val;
    }
}

反转链表

206

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode reverseList(ListNode head) {
        // 方法一:在头结点不断插入
        // if(head == null){
        //     return head;//空节点不需要反转
        // }
        // ListNode temp = head.next;//临时节点前移一位
        // head.next = null;//代反转链表的头结点拆出来
        // ListNode newHead = head;//待反转链表的头结点赋给新的链表        
        // while(temp != null){
        //     head = temp;//找出待反转链表的新头结点
        //     temp = temp.next;//临时节点前移一位
        //     head.next = null;//待反转链表的新头拆出来
        //     head.next = newHead;//待反转链表的心头指向新的链表
        //     newHead = head;//得到新的链表的新头
        // }
        // return newHead;
        // 方法二:压栈,利用栈的先入后出
        // if(head == null){
        //     return head;
        // }
        // Stack<ListNode> stack = new Stack<>();
        // ListNode temp = head;
        // while(head != null){
        //     temp = head.next;
        //     head.next = null;
        //     stack.push(head);
        //     head = temp;
        // }
        // ListNode newHead = new ListNode();
        // temp = newHead;
        // while(!stack.isEmpty()){
        //     temp.next = stack.pop();
        //     temp = temp.next;
        // }
        // return newHead.next;
        // 方法三:递归
        return reverse(null, head);
        // 方法四:从后往前递归
        // if(head == null){
        //     return null;
        // }
        // if(head.next == null){
        //     return head;
        // }
        // ListNode newHead = reverseList(head.next);
        // head.next.next = head;
        // head.next = null;
        // return newHead;

    }
    public ListNode reverse(ListNode pre, ListNode cur){
        if(cur == null){
            return pre;
        }
        ListNode temp = cur.next;
        cur.next = pre;
        return reverse(cur,temp);
    }
}

两两交换链表中的节点

24

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode swapPairs(ListNode head) {
        // 方法一:从前往后进行迭代
        // if(head == null){
        //     return null;
        // }
        // if(head.next == null){
        //     return head;
        // }
        // ListNode temp = head.next;//依次记录偶数节点的位置
        // head.next = head.next.next;//交换相邻的节点
        // temp.next = head;
        // temp.next.next = swapPairs(temp.next.next);//迭代交换下一个相邻的节点
        // return temp;
        // 方法二:双指针
        if(head == null){
            return null;
        }
        if(head.next == null){
            return head;
        }
        ListNode temp = head.next;
        ListNode pre = head.next;//记录新的头结点
        while(temp != null){
            head.next = head.next.next;//交换相邻的节点
            temp.next = head;
            if(head.next == null || head.next.next == null){
                break;
            }else{
                head = head.next;//指向下一个相邻节点的奇数节点
                temp.next.next = temp.next.next.next;//上一个相邻节点的偶数节点指向下一个节点的偶数节点
                temp = head.next;//下一个相邻节点的偶数节点
            }  
        }
        return pre;
    }
}

删除链表的倒数第 N 个结点

19

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode removeNthFromEnd(ListNode head, int n) {
        // 方法一:快慢指针,返回头结点说明head的头结点不能动,所以把链表的地址赋给另外一个对象
        // 添加虚拟头结点,方便操作。比如需要删除的是头结点的时候不需要单独考虑这种特殊情况
        ListNode dummyHead = new ListNode();
        dummyHead.next = head;
        ListNode cur = dummyHead;
        ListNode temp = dummyHead; 
        for(int i = 0; i < n; i++){
            temp = temp.next;
        }
        while(temp.next != null){
            cur = cur.next;
            temp = temp.next;
        }
        cur.next = cur.next.next;
        return dummyHead.next;
    }
}

链表相交

02.07

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        if(headA == null || headB == null){
            return null;
        }
        ListNode dummyHeadA = headA;
        int countA = 0;
        int countB = 0;
        ListNode dummyHeadB = headB;
        while(dummyHeadA.next != null){
            dummyHeadA = dummyHeadA.next;
            countA++;
        }
        while(dummyHeadB.next != null){
            dummyHeadB = dummyHeadB.next;
            countB++;
        }
        if(dummyHeadA != dummyHeadB){
            return null;//尾节点不相交则说明不相交
        }
        dummyHeadA = headA;
        dummyHeadB = headB;
        int index = (countA - countB) > 0 ? (countA - countB) : -(countA - countB);//两个链表的长度差
        for(int i = 0; i < index; i++){//让较长的链表先移动index位
            if((countA - countB) > 0){
                dummyHeadA = dummyHeadA.next;
            }else{
                dummyHeadB = dummyHeadB.next;
            }
        }
        while(dummyHeadA != dummyHeadB){//两个链表逐次向前移动,找出相交的第一个节点
            dummyHeadA = dummyHeadA.next;
            dummyHeadB = dummyHeadB.next;
        }
        return dummyHeadA;
    }
}

环形链表 II

142

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode detectCycle(ListNode head) {
        ListNode slow = head;
        ListNode fast = head;
        int count = 0;
        while(fast != null && fast.next != null){//判断是否有环
            fast = fast.next.next;
            slow = slow.next;
            count++;
            if(fast == slow){
        // 找环的入口
                while(head != slow){
                    head = head.next;
                    slow = slow.next;
                }
                return head;
            }
        }
        
        return null;
    }
}

哈希表:也叫散列表,用来快速判断一个元素是否出现在集合中,实际上是用空间换时间

有效的字母异位词

242

class Solution {
    public boolean isAnagram(String s, String t) {
        // 方法一:使用hashmap
        // if(s.length() != t.length()){
        //     return false;
        // }
        // HashMap<Character, Integer> map = new HashMap<>();
        // for(int i = 0; i < s.length(); i++){
        //     map.put(s.charAt(i), (map.getOrDefault(s.charAt(i), 0) + 1));
        // }
        // for(int i = 0; i < t.length(); i++){
        //     if(map.containsKey(t.charAt(i))){
        //         if(map.get(t.charAt(i)) == 1){
        //             map.remove(t.charAt(i));
        //         }else{
        //             map.put(t.charAt(i), (map.get(t.charAt(i)) - 1));
        //         }
        //     }else{
        //         return false;
        //     }
        // }
        // return true;
        // 方法二:用数组来构造哈希表,字典解法
        if(s.length() != t.length()){
            return false;
        }
        int[] arr = new int[26];
        for(int i = 0; i < s.length(); i++){
            int index = s.charAt(i) - 'a';
            arr[index] = arr[index] + 1;
        }
        for(int i = 0; i < t.length(); i++){
            int index = t.charAt(i) - 'a';
            if(arr[index] != 0){
                arr[index] = arr[index] - 1;
            }else{
                return false;
            }
        }
        return true;
    }
}

两个数组的交集

349

class Solution {
    public int[] intersection(int[] nums1, int[] nums2) {
        // 使用hashset,无序,且不能存储重复数据,符合题目要求
        HashSet<Integer> set = new HashSet<>();
        HashSet<Integer> record = new HashSet<>();
        for(int i = 0; i < nums1.length; i++){
            set.add(nums1[i]);
        }
        for(int i = 0; i < nums2.length; i++){
            if(set.remove(nums2[i])){
                record.add(nums2[i]);
            }
        }
        return record.stream().mapToInt(x -> x).toArray();
    }
}

快乐数

202

class Solution {
    public boolean isHappy(int n) {
        // 使用hashset,当有重复的数字出现时,说明开始重复,这个数不是快乐数
        HashSet<Integer> set = new HashSet();
        int sum = 0;
        while(true){
            while(n != 0){
                sum = sum + (n%10)*(n%10);
                n = n / 10;
            }
            if(sum == 1){
                return true;
            }
            if(!set.add(sum)){
                return false;
            }
            n = sum;
            sum = 0;
        }
    }
}

两数之和

1

class Solution {
    public int[] twoSum(int[] nums, int target) {
        // 方法一:暴力解法
        // int[] arr = new int[2];
        // for(int i = 0; i < nums.length - 1; i++){
        //     for(int j = i + 1 ; j < nums.length; j++){
        //         if(target == (nums[i] + nums[j])){
        //             return new int[]{i,j};
        //         }
        //     }
        // }
        // return new int[0];
        // 方法二:HashMap
        HashMap<Integer, Integer> map = new HashMap<>();
        for(int i = 0; i < nums.length; i++){
            int find = target - nums[i];
            if(map.containsKey(find)){
                return new int[]{i, map.get(find)};
            }else{
                map.put(nums[i],i);
            }
        }
        return null;
    }
}

四数相加 II

454

class Solution {
    public int fourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
        // 四个数,用哈希表,参考代码随想录
        HashMap<Integer,Integer> map = new HashMap<>();
        int count = 0;
        for(int i : nums1){
            for(int j : nums2){
                int temp = i + j;
                if(map.containsKey(temp)){
                    map.put(temp, map.get(temp) + 1);
                }else{
                    map.put(temp, 1);
                }
            }
        }
        for(int i : nums3){
            for(int j : nums4){
                int temp = 0- (i + j);
                if(map.containsKey(temp)){
                    count += map.get(temp);
                }
            }
        }
        return count;
    }
}

赎金信

383

class Solution {
    public boolean canConstruct(String ransomNote, String magazine) {
        // 方法一;hashmap
        // HashMap<Character,Integer> map = new HashMap<>();
        // char temp;
        // for(int i = 0; i < ransomNote.length(); i++){
        //     temp = ransomNote.charAt(i);
        //     if(map.containsKey(temp)){
        //         map.put(temp, map.get(temp) + 1);
        //     }else{
        //         map.put(temp, 1);
        //     }
        // }
        // for(int i = 0; i < magazine.length(); i++){
        //     temp = magazine.charAt(i);
        //     if(map.containsKey(temp)){
        //         if(map.get(temp) == 1){
        //             map.remove(temp);
        //         }else{
        //             map.put(temp, map.get(temp) - 1);
        //         }
        //     }
        // }
        // if(map.isEmpty()){
        //     return true;
        // }else{
        //     return false;
        // }
        // 方法二:数组在哈希法的应用,比起方法一更加节省空间,因为字符串只有小写的英文字母组成
        int[] arr = new int[26];
        int temp;
        for(int i = 0; i < ransomNote.length(); i++){
            temp = ransomNote.charAt(i) - 'a';
            arr[temp] = arr[temp] + 1;
        }
        for(int i = 0; i < magazine.length(); i++){
            temp = magazine.charAt(i) - 'a';
            if(arr[temp] != 0){
                arr[temp] = arr[temp] - 1;
            }
        }
        for(int i = 0; i < arr.length; i++){
            if(arr[i] != 0){
                return false;
            }
        }
        return true;
    }
}

三数之和

15

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        // 如果考虑使用跟四数之和类似的求解方式,由于三元组是在同一个数组中寻找的,且要求不重复的三元组,因此求解会比较复杂
        // 题目要求返回的是三元组的具体数值,而不是索引值,因此可以考虑使用双指针
        List<List<Integer>> result = new ArrayList<>();
        List<Integer> temp = new ArrayList<Integer>();
        Arrays.sort(nums);
        for(int i = 0; i < nums.length; i++){
            if(nums[i] > 0){
                return result;
            }
            if(i > 0 && nums[i] == nums[i - 1]){
                continue;
            }
            int left = i + 1;
            int right = nums.length - 1;
            while(left < right){
                if((nums[i] + nums[left] + nums[right]) > 0){
                    right--;
                }else if((nums[i] + nums[left] + nums[right]) < 0){
                    left++;
                }else{
                    temp.add(nums[i]);
                    temp.add(nums[left]);
                    temp.add(nums[right]);
                    result.add(temp);
                    temp = new ArrayList<Integer>();
                    while(left < right && nums[right] == nums[right-1]){
                        right--;
                    }
                    while(left < right && nums[left] == nums[left+1]){
                        left++;
                    }
                    left++;
                    right--;
                }
            }
        }
        return result;
    }
}

四数之和

18

class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> list = new ArrayList<List<Integer>>();
        for(int i=0;i<nums.length-1;i++){
			for(int j=0;j<nums.length-1-i;j++){
				if(nums[j]>nums[j+1]){
					int temp = nums[j+1];
					nums[j+1] = nums[j];
					nums[j] = temp;
				}
			}
		}
        for(int i = 0; i < nums.length; i++){
            if (nums[i] > 0 && nums[i] > target) {
                return list;
            }
            if(i > 0 && nums[i] == nums[i - 1]){
                continue;
            }
            for(int j = i + 1; j < nums.length; j++){
                if(j > i + 1 && nums[j] == nums[j - 1]){
                    continue;
                }
                int left = j + 1;
                int right = nums.length - 1;
                while(left < right){
                    long sum = (long)(nums[i] + nums[j] + nums[left] + nums[right]);
                    if(sum > target){
                        right--;
                    }else if(sum < target){
                        left++;
                    }else{
                        list.add(Arrays.asList(nums[i] , nums[j] , nums[left] , nums[right]));
                        while(left < right && nums[left] == nums[left + 1]){
                            left++;
                        }
                        while(left < right && nums[right] == nums[right - 1]){
                            right--;
                        }
                        left++;
                        right--;
                    }
                }
            }
        }
        return list;
    }
}

字符串:

反转字符串

344

class Solution {
    public void reverseString(char[] s) {
        // 左右指针
        int leftNode = 0;
        int rifhtNode = s.length - 1;
        char temp;
        while(leftNode <= rifhtNode){
            temp = s[rifhtNode];
            s[rifhtNode] = s[leftNode];
            s[leftNode] = temp;
            leftNode++;
            rifhtNode--;
        }
    }
}

反转字符串 II

541

class Solution {
    public String reverseStr(String s, int k) {
        char[] arr = s.toCharArray();
        for(int i = 0; i < arr.length; i=i+2*k){
            if((i+k)<=arr.length){
                reverse(arr,i,i+k-1);
            }else{
                reverse(arr,i,arr.length-1);
            }
        }
        return new String(arr);
    }
    public void reverse(char[] arr, int left, int right){
        while(left < right){
            char temp = arr[left];
            arr[left] = arr[right];
            arr[right] = temp;
            left++;
            right--;
        }
    }
}

替换空格

offer 05

class Solution {
    public String replaceSpace(String s) {
        StringBuffer target = new StringBuffer();
        char temp;
        for(int i = 0; i < s.length(); i++){
            temp = s.charAt(i);
            if(temp == ' '){
                target.append("%20");
            }else{
                target.append(temp);
            }
        }
        return new String(target);
    }
}

反转字符串中的单词

151

class Solution {
    public String reverseWords(String s) {
        StringBuffer buffer = new StringBuffer();
        int index = 0;
        while(s.charAt(index)==' '){
            index++;
        }
        for(;index < s.length();index++){
            if(s.charAt(index)!=' '){
                buffer.append(s.charAt(index));
            }else{
                while(index < s.length() && s.charAt(index)==' '){
                    index++;
                }
                if(index < s.length()){
                    buffer.append(' ');
                    buffer.append(s.charAt(index));
                }
            }
        }
        String arr = new String(buffer);
        String[] result = arr.split(" ");
        int left = 0;
        int right = result.length - 1;
        while(left < right){
            String temp = result[left];
            result[left] = result[right];
            result[right] = temp;
            left++;
            right--;
        }
        StringBuffer buffer1 = new StringBuffer();
        for(int a = 0; a < result.length; a++){
            buffer1.append(result[a]);
            if(a < result.length - 1){
                buffer1.append(" ");
            }
            
        }
        return new String(buffer1);
    }
}

左旋转字符串

Offer 58 - II

class Solution {
    public String reverseLeftWords(String s, int n) {
// 先整体反转,在根据k进行部分反转
        char[] str = s.toCharArray();
        reverse(str, 0, str.length - 1);
        reverse(str, 0, str.length - 1 - n);
        reverse(str, str.length - n, str.length - 1);
        return new String(str);
    }
    public void reverse(char[] str, int start, int end){
        while(start < end){
            str[start] ^= str[end];
            str[end] ^= str[start];
            str[start] ^= str[end];
            start++;
            end--;
        }
    }
}

找出字符串中第一个匹配项的下标

KMP字符串匹配:在主串中寻找子串的过程,称为模式匹配
KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。
前缀表:记录下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。
28

class Solution {
    public int strStr(String haystack, String needle) {
        int[] arr = kmp(needle);
        for(int i = 0, j = 0; i < haystack.length(); i++){
            while(j > 0 && haystack.charAt(i) != needle.charAt(j)){
                j = arr[j - 1];
            }
            if(haystack.charAt(i) == needle.charAt(j)){
                j++;
            }
            if(j == needle.length()){
                return i - j + 1;
            }
        }
        return -1;
    }
    public int[] kmp(String needle){
        int[] next = new int[needle.length()];
        for(int i = 1, j = 0; i < next.length; i++){
            while(j > 0 && needle.charAt(i) != needle.charAt(j)){
                j = next[j - 1];
            }
            if(needle.charAt(i) == needle.charAt(j)){
                j++;
            }
            next[i] = j;
        }
        return next;
    }
}

重复的子字符串

459

class Solution {
    public boolean repeatedSubstringPattern(String s) {
        int[] next = new int[s.length()];
        next[0] = 0;
        for(int i = 1, j = 0; i < s.length(); i++){
            while(j > 0 && s.charAt(i) != s.charAt(j)){
                j = next[j - 1];
            }
            if(s.charAt(i) == s.charAt(j)){
                j++;
            }
            next[i] = j;
        }
        if(next[next.length - 1] != 0 && next.length%(next.length - next[next.length - 1]) == 0){
            return true;
        }
        return false;
    }
}

栈和队列:容器适配器,不提供迭代器
232、用栈实现队列

class MyQueue {
    Stack<Integer> stack1 = new Stack<>();
    Stack<Integer> stack2 = new Stack<>();
    public MyQueue() {
        
    }
    
    public void push(int x) {
        stack1.push(x);
    }
    
    public int pop() {
        if(stack2.isEmpty()){
            while(!stack1.isEmpty()){
                stack2.push(stack1.pop());
            }
        }
        return stack2.pop();
    }
    
    public int peek() {
        if(stack2.isEmpty()){  
            while(!stack1.isEmpty()){
                stack2.push(stack1.pop());
            }
        }
        return stack2.peek();
    }
    
    public boolean empty() {
        if(stack1.isEmpty() && stack2.isEmpty()){
            return true;
        }
        return false;
    }
}

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue obj = new MyQueue();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.peek();
 * boolean param_4 = obj.empty();
 */

225、用队列实现栈

class MyStack {
    Queue<Integer> queue1;
    Queue<Integer> queue2;//用来备份栈的数据(除栈顶)
    public MyStack() {
        queue1 = new LinkedList<>();
        queue2 = new LinkedList<>();
    }
    // 方法一:较为繁琐
    // public void push(int x) {
    //     while(queue1.size() > 0){
    //         queue2.offer(queue1.poll());
    //     }
    //     while(queue2.size() > 0){
    //         queue1.offer(queue2.poll());
    //     }
    //     queue1.offer(x);
    // }
    
    // public int pop() {
    //     while(queue1.size() > 1){
    //         queue2.offer(queue1.poll());
    //     }
    //     int temp =  queue1.poll();
    //     while(queue2.size() > 0){
    //         queue1.offer(queue2.poll());
    //     }
    //     return temp;
    // }
    
    // public int top() {
    //     while(queue1.size() > 1){
    //         queue2.offer(queue1.poll());
    //     }
    //     int temp = queue1.peek();
    //     while(queue1.size() > 0){
    //         queue2.offer(queue1.poll());
    //     }
    //     while(queue2.size() > 0){
    //         queue1.offer(queue2.poll());
    //     }
    //     return temp;
    // }
    // public boolean empty() {
    //     return queue1.isEmpty() && queue2.isEmpty();
    // }
    // 方法二:参考代码随想录
    // public void push(int x) {
    //     queue2.offer(x);
    //     while(!queue1.isEmpty()){
    //         queue2.offer(queue1.poll());
    //     }
    //     Queue<Integer> temp = new LinkedList<>();
    //     queue1 = queue2;
    //     queue2 = temp;
    // }
    
    // public int pop() {
    //     return queue1.poll();
    // }
    
    // public int top() {
    //     return queue1.peek();
    // }
    // public boolean empty() {
    //     return queue1.isEmpty() && queue2.isEmpty();
    // }
    // 方法三:用单队列实现
    public void push(int x) {
        if(queue1.isEmpty()){
            queue1.offer(x);
        }else{
            int count = queue1.size();
            queue1.offer(x);
            while(count > 0){
                queue1.offer(queue1.poll());
                count--;
            }
        }
    }
    
    public int pop() {
        return queue1.poll();
    }
    
    public int top() {
        return queue1.peek();
    }
    public boolean empty() {
        return queue1.isEmpty();
    }
}

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack obj = new MyStack();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.top();
 * boolean param_4 = obj.empty();
 */

20、有效的括号

class Solution {
    public boolean isValid(String s) {
        // 方法一:用字符串
        // String s1 = "";
        // if(s.length()%2 == 1){
        //     return false;
        // }
        // for(int i = 0; i < s.length(); i++){
        //     if(s.charAt(i) == '(' || s.charAt(i) == '[' || s.charAt(i) == '{'){
        //         s1 = s1 + s.charAt(i);
        //     }else if(s1.length() == 0){
        //         return false;
        //     }else if((s.charAt(i) == ']') && (s1.charAt(s1.length()-1) == '[')){
        //         s1 = s1.substring(0,s1.length() - 1);              
        //     }else if((s.charAt(i) == '}') && (s1.charAt(s1.length()-1) == '{')){
        //         s1 = s1.substring(0,s1.length() - 1);              
        //     }else if((s.charAt(i) == ')') && (s1.charAt(s1.length()-1) == '(')){
        //         s1 = s1.substring(0,s1.length() - 1);              
        //     }else{
        //         return false;
        //     }
        // }
        // if(s1.length() == 0){
        //     return true;
        // }else{
        //     return false;
        // }
        // 方法二:用栈
        Stack<Character> stack = new Stack<>();
        char[] arr = s.toCharArray();
        for(int i = 0; i < arr.length; i++){
            if(arr[i] == '(' || arr[i] == '[' || arr[i] == '{'){
                stack.push(arr[i]);
            }else if(arr[i] == ')'){
                if(stack.isEmpty() || stack.pop() != '('){
                    return false;
                }
            }else if(arr[i] == ']'){
                if(stack.isEmpty() ||stack.pop() != '['){
                    return false;
                }
            }else if(arr[i] == '}'){
                if(stack.isEmpty() ||stack.pop() != '{'){
                    return false;
                }
            }
        }
        return stack.isEmpty();
    }
}

1047、删除字符串中的所有相邻重复项

class Solution {
    public String removeDuplicates(String s) {
        // 方法一:用栈
        char[] arr = s.toCharArray();
        Stack<Character> stack = new Stack<>();
        for(int i = 0; i < arr.length; i++){
            if(stack.isEmpty()){
                stack.push(arr[i]);
            }else if(stack.peek() == arr[i]){
                stack.pop();
            }else{
                stack.push(arr[i]);
            }
        }
        String str = "";
        while(!stack.isEmpty()){
            str = stack.pop() + str;
        }
        return str;
        // // 方法二:双线队列
        // char[] arr = s.toCharArray();
        // ArrayDeque<Character> arraydeque = new ArrayDeque<>();
        // for(int i = 0; i < arr.length; i++){
        //     if(arraydeque.isEmpty()){
        //         arraydeque.push(arr[i]);
        //     }else if(arraydeque.peek() == arr[i]){
        //         arraydeque.pop();
        //     }else{
        //         arraydeque.push(arr[i]);
        //     }
        // }
        // String str = "";
        // while(!arraydeque.isEmpty()){
        //     str = arraydeque.pop() + str;
        // }
        // return str;
    }
}

150、逆波兰表达式求值

class Solution {
    public int evalRPN(String[] tokens) {
        Stack<Integer> stack = new Stack<>();
        for(int i = 0; i < tokens.length; i++){
            if(tokens[i].equals("+")){
                stack.push(stack.pop() + stack.pop());
            }else if(tokens[i].equals("-")){
                stack.push(-stack.pop() + stack.pop());
            }else if(tokens[i].equals("*")){
                stack.push(stack.pop() * stack.pop());
            }else if(tokens[i].equals("/")){
                int divisor = stack.pop();
                int dividend = stack.pop();
                int temp = dividend/divisor;
                stack.push(temp);
            }else{
                stack.push(Integer.valueOf(tokens[i]));
            }
        }
        return stack.pop();
    }
}

239、滑动窗口最大值
单调队列

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        Deque<Integer> deque = new LinkedList<>();//单调双向队列
        int[] result = new int[nums.length - k + 1];
        for(int i = 0; i < nums.length; i++){
            while(deque.peekFirst() != null && deque.peekFirst() < i - k + 1){
                deque.pollFirst();
            }
            while(deque.peekLast() != null && nums[i] > nums[deque.peekLast()]){
                deque.pollLast();
            }
            deque.offerLast(i);
            if(i - k + 1 >= 0 ){
                result[i - k + 1] = nums[deque.peekFirst()];
            }
        }
        return result;
    }
}

347、前 K 个高频元素
优先级队列,大顶堆,小顶堆

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        Map<Integer, Integer> map = new HashMap<>();
        for(int i: nums){
            map.put(i, map.getOrDefault(i, 0) + 1);
        }
        PriorityQueue<int[]> pq = new PriorityQueue<>(new Comparator<int[]>(){
            public int compare(int[] m, int[] n){
                return m[1] - n[1];
            }
        });
        for(Map.Entry<Integer, Integer> entry: map.entrySet()){
            if(pq.size() < k){
                pq.add(new int[]{entry.getKey(), entry.getValue()});
            }else{
                if(pq.peek()[1] < entry.getValue()){
                    pq.poll();
                    pq.add(new int[]{entry.getKey(), entry.getValue()});
                }
            }
        }
        int[] arr = new int[k];
        for(int i = 0; i < arr.length; i++){
            arr[i] = pq.poll()[0];
        }
        return arr;
    }
}