Definition. (Lebesgue outer measure)

对于任意集合 \(A \subset \mathbb{R}\) 的勒贝格外测度(Lebesgue outer measure)定义为:

\[m^{*}(A) = \inf Z_{A}, \quad \mbox{where } Z_{A} = \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\}
\]

同时我们称区间序列 \(\left\{ I_{n} \right\}^{\infty}_{n=1}\) 覆盖(cover)了集合 \(A\)


Theorem 7.1

对于集合 \(A \subset \mathbb{R}\),当且仅当 \(m^{*}(A) = 0\)\(A\) 为一个零测集。


Proof. (Theorem 7.1)

\(\Longrightarrow\)\(A \subset \mathbb{R}\)\(m^{*}(A) = 0\)。由定义:

\[m^{*}(A) = \inf\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\} = 0
\]

Mapping:

\[f: ~ \left\{ \{ I_{n} \}^{\infty}_{n=1}: ~ I_{n} \mbox{ are intervals, } A \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\} \longrightarrow \left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ are intervals, } A \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}
\]

为一个 surjection(满射)。即对于:

\[\forall \sum\limits^{\infty}_{n=1} l(I_{n}), ~ I_{n} \mbox{ are intervals, } A \subset\bigcup\limits^{\infty}_{n=1}I_{n}: ~ \exists \left\{ I^{'}_{n} \right\}^{\infty}_{n=1}, I^{'}_{n} \mbox{ are intervals, } A \subset\bigcup\limits^{\infty}_{n=1}I^{'}_{n}: ~ \sum\limits^{\infty}_{n=1} l(I_{n}) = \sum\limits^{\infty}_{n=1} l(I^{'}_{n})
\]

(意思就是,对于每一个这种区间长度和,总能找到一个满足相同条件的区间序列,最差的情况也可以是自己。)

所以可以应用 infimum 的定义:

  1. for \(~ \forall \left\{ I_{n} \right\}^{\infty}_{n=1}, ~ I_{n} \mbox{ are intervals}, ~ A \subset \bigcup\limits^{\infty}_{n=1} I_{n}: ~ \sum\limits^{\infty}_{n=1}l(I_{n}) \geq 0\)

  2. for \(~ \forall \varepsilon > 0: ~ \exists \left\{ I^{'}_{n} \right\}^{\infty}_{n=1}, ~ I^{'}_{n} \mbox{ are intervals}, ~ A \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n}: ~ \sum\limits^{\infty}_{n=1} l(I^{'}_{n}) < \varepsilon\)

其中 2. 恰好满足了零测集的定义。

\[\]

\[\]

\(\Longleftarrow\)\(A \subset \mathbb{R}\)\(A\) 为零测集,由定义:

\[\mbox{for } ~ \forall \varepsilon > 0: ~ \exists \left\{ I_{n} \right\}^{\infty}_{n=1}, ~ I_{n} \mbox{ 为区间}: ~ A \subset \bigcup\limits^{\infty}_{n=1} I_{n}, ~ \sum\limits^{\infty}_{n=1} l(I_{n}) < \varepsilon
\]

并且:\(\sum\limits^{\infty}_{n=1} l(I_{n})\) 为长度和,必有:\(\sum\limits^{\infty}_{n=1} l(I_{n}) \geq 0\),所以:

\[m^{*}(A) = \inf\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ are intervals}, ~ A \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\} = 0
\]


Theorem 7.2

如果 \(A \subset B\),那么 \(m^{*}(A) \leq m^{*}(B)\)


Lemma.

\(A\subset B\),则 \(\inf A \geq \inf B\)


Proof. (Lemma)

由下确界定义:

\[\forall b \in B: ~ b \geq \inf B
\]

又:\(A \subset B\),则有:

\[\forall a \in A: ~ a \in B
\]

所以:

\[\forall a \in A: ~ a \geq \inf B
\]

由下确界定义:

\[\forall \varepsilon > 0: ~ \exists a_{0} \in A: ~ a_{0} < \inf A + \varepsilon
\]

假设 \(\inf A < \inf B\),令 \(\varepsilon = \inf B - \inf A > 0\),则:

\[\exists a_{0} \in A: ~ a_{0} < \inf A + \inf B - \inf A = \inf B
\]

这与: \(\forall a \in A: ~ a \geq \inf B\) 矛盾,故 \(\inf A \geq \inf B\)


Proof. (Theorem 7.2)

设:

\[\begin{align*}
& \inf\left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ 为区间}, ~ A \subset\bigcup\limits^{\infty}_{n=1} I_{n} \right\} = m^{*}(A) = a\\
& \inf\left\{ \sum\limits^{\infty}_{n=1}l(J_{n}): ~ J_{n} \mbox{ 为区间}, ~ B \subset\bigcup\limits^{\infty}_{n=1} J_{n} \right\} = m^{*}(B) = b\\
\end{align*}
\]

由于 \(A \subset B\),则:\(A \subset B \subset \bigcup\limits^{\infty}_{n=1}J_{n}\)\(\left\{ J_{n} \right\}^{\infty}_{n=1}\) 为以上定义的区间序列。所以包含 \(B\) 的这样的区间序列 \(\left\{ J_{n} \right\}^{\infty}_{n=1}\) 也一定包含 \(A\)

(即:\(\left\{ J_{n} \right\}^{\infty}_{n=1}\) 一定是 \(\left\{ I_{n} \right\}^{\infty}_{n=1}\),但\(\left\{ I_{n} \right\}^{\infty}_{n=1}\) 不一定是 \(\left\{ J_{n} \right\}^{\infty}_{n=1}\)

所以:

\[\left\{\left\{ I_{n} \right\}^{\infty}_{n=1}: ~ I_{n} \mbox{ 为区间}, ~ A \subset\bigcup\limits^{\infty}_{n=1} I_{n} \right\} \supset \left\{\left\{ J_{n} \right\}^{\infty}_{n=1}: ~ J_{n} \mbox{ 为区间}, ~ B \subset\bigcup\limits^{\infty}_{n=1} J_{n} \right\}
\]

Theorem 7.1 的证明中构造的映射,有:

\[\left\{\sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ 为区间}, ~ A \subset\bigcup\limits^{\infty}_{n=1} I_{n} \right\} \supset \left\{\sum\limits^{\infty}_{n=1}l(J_{n}): ~ J_{n} \mbox{ 为区间}, ~ B \subset\bigcup\limits^{\infty}_{n=1} J_{n} \right\}
\]

which implies:

\[\implies \inf Z_{A} \leq \inf Z_{B} \quad \implies a \leq b \\

\mbox{(By the conclusion of previous lemma)}
\]


Theorem 7.3

如果 \(I\) 是一个区间,那么 \(m^{*}(I) = l(I)\)


Proof. (Theorem 7.3)

首先,我们知道:

\[m^{*}(I) = \inf\left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}
\]

对于 \(\forall \sum\limits^{\infty}_{n=1}l(I_{n}), ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n}\)

由于 \(I \subset \bigcup\limits^{\infty}_{n=1} I_{n}\),则 \(l(I) \leq \sum\limits^{\infty}_{n=1} l(I_{n})\),故:

\[\forall \sum\limits^{\infty}_{n=1}l(I_{n}) \in \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}: ~ l(I) \leq \sum\limits^{\infty}_{n=1} l(I_{n})
\]

由于 \(I\) 为区间,且 \(I \subset I\),则:

\[l(I) \in \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}
\]

则:

\[\mbox{for: } \forall \varepsilon > 0: ~ \exists l(I) \in \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}: ~ l(I) < l(I) + \varepsilon
\]

所以:

\[m^{*}(I) = \inf \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\} = l(I)
\]

  • 注:这里运用到一条显然的等价条件,即:

    \[\mbox{If } ~ \forall a \in A: ~ a_{0} \leq a \; \mbox{ and } \; a_{0} \in A \quad \iff \quad \inf A = \min A = a_{0}
    \]


Theorem 7.4 (Countable subadditivity - 次可加性)

\[m^{*}\big( \bigcup\limits^{\infty}_{n=1} E_{n} \big) \leq \sum\limits^{\infty}_{n=1} m^{*}(E_{n})
\]


Proof. (Theorem 7.4)

由定义:

\[m^{*}(\bigcup\limits^{\infty}_{n=1}E_{n}) = \inf\left\{ \sum\limits^{\infty}_{t=1} l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1}J_{t} \right\}
\]

For \(\forall E_{n}\),有:\(m^{*}(E_{n}) = \inf\left\{ \sum\limits^{\infty}_{s=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\)

若对于 \(\forall n \in \mathbb{N}^{+}: ~ E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s}\),其中\(I_{s}^{n}\) 为区间,则对于 \(\forall x \in \bigcup\limits^{\infty}_{n=1} E_{n}: ~ \exists n_{0} \in \mathbb{N}^{+}: x \in E_{n_{0}}\),则 \(x \in \bigcup\limits^{\infty}_{s=1}I^{n_{0}}_{s}\)

又:\(\bigcup\limits^{\infty}_{s=1}I^{n_{0}}_{s} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s}\),则:

\[\forall x \in \bigcup\limits^{\infty}_{n=1} E_{n}: ~ x \in \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \quad \iff \quad \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s}
\]

因此,若对于 \(\forall n \in \mathbb{N}^{+}: ~ E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}\),则有:\(\bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s}\)

设两集合:

\[\begin{align*}
A & = \left\{ \left\{ J_{t} \right\}^{\infty}_{t=1}: ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} \\
B & = \left\{ \left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}: ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s} \right\} \\
& = \left\{ \left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}: ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
\end{align*}
\]

可以发现,若视 \(B\) 中的 \(\left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}\) 为一个新的区间序列,且该区间序列的可数并包含了 \(\bigcup\limits^{\infty}_{n=1} E_{n}\),这符合 \(A\) 的定义,所以:

\[B \subset A
\]

由 (i) 中所述的满射方式,存在以下满射 \(f\)

\[A = \left\{ \left\{ J_{t} \right\}^{\infty}_{t=1}: ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} \longrightarrow \left\{ \sum\limits^{\infty}_{t=1}l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} = C
\]

而:

\[\begin{align*}
f(B) & = f\left(\left\{ \left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}: ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\right)\\
& = \left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\\
& = D
\end{align*}
\]

\(B \subset A\),则 \(D \subset C\),则:

\[\inf D \geq \inf C \\
\iff \\
\inf \left\{ \sum\limits^{\infty}_{t=1}l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} \leq \left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
\]

又:\(\left\{ I^{n}_{s} \right\}^{\infty}_{s=1}\) 的选择至于条件 “\(E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s}\)” 有关(对于每个 \(n \in \mathbb{N}^{+}\)), 则与 \(n\) 无关,则:

\[\inf\left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\} = \sum\limits^{\infty}_{n=1} \inf\left\{ \sum\limits^{\infty}_{n=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
\]

  • 其实这里有种更简单的证明,即直接证明以上两边相等。设:

    \[\begin{align*}
    D & = \left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\\
    D_{n} & = \left\{ \sum\limits^{\infty}_{n=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
    \end{align*}
    \]

    \(\inf{D}\) 满足:

    \(\sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \geq \inf{D}\)

    \(\forall \varepsilon: ~ \exists \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) < \inf{D} + \varepsilon\)

    则:

    \[\begin{align*}
    & \forall n \in \mathbb{N}^{+}: ~ \forall \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D_{n}: ~ \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \geq \inf{D_{n}}\\
    \implies & \\
    &\forall \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \geq \sum^{\infty}_{n=1} \inf{D_{n}}
    \end{align*}
    \]

    \[\begin{align*}
    & \forall n \in \mathbb{N}^{+}: ~ \forall \varepsilon_{n} = \frac{\varepsilon}{2^{n}} > 0: ~ \exists \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D_{n}: ~ \exists \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) < \inf{D_{n}} + \varepsilon_{n} \\
    \implies & \\
    & \forall \sum\limits^{\infty}_{n=1} \varepsilon_{n} = \varepsilon > 0: ~ \exists \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) < \sum\limits^{\infty}_{n=1} \inf{D_{n}} + \varepsilon
    \end{align*}
    \]

所以:

\[\inf{D} = \sum\limits^{\infty}_{n=1} \inf{D_{n}}
\]

所以:

\[\inf{\left\{ \sum\limits^{\infty}_{t=1}l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\}} \leq \sum\limits^{\infty}_{n=1}\inf\left\{ \sum\limits^{\infty}_{n=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\\
\iff\\
m^{*}\big( \bigcup^{\infty}_{n=1} E_{n} \big) \leq \sum\limits^{\infty}_{n=1}m^{*}(E_{n})
\]


Theorem 7.5 (Translation invariant - 平移不变性)

对于 \(\forall A \subset \mathbb{R}: ~ \forall t \in \mathbb{R}: ~ m^{*}(A) = m^{*}(A + t)\),其中 \(A + t = \left\{ a + t: ~ \forall a \in A \right\}\)


Proof. (Theorem 7.5)

对于 \(\forall A \subset \mathbb{R}: ~ \forall t \in \mathbb{R}\),令:

\[\begin{align*}
m^{*}(A) & = \inf\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\}\\
m^{*}(A + t) & = \inf\left\{ \sum\limits^{\infty}_{n=1} I_{n}^{'}: ~ I_{n}^{'} \mbox{ 为区间, } A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n} \right\}
\end{align*}
\]

由满射确定 \(m^{*}(A)\) 的原象:

\[N = \left\{ \left\{ I_{n} \right\}^{\infty}_{n=1}: ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\}
\]

令:

\[N^{'} = \left\{ \left\{ I^{'}_{n} \right\}^{\infty}_{n=1}: ~ \left\{ I^{'}_{n} \right\}^{\infty}_{n=1} = \left\{ I_{n} + t \right\}^{\infty}_{n=1} \mbox{ for } \forall \left\{ I_{n} \right\}^{\infty}_{n=1} \in N \right\}
\]

由于 \(I_{n} + t = \left\{ i_{n} + t: ~ i_{n} \in I_{n} \right\}\)\(I_{n}\) 为区间,则 \(I^{'}_{n} = I_{n} + t\) 也为区间。

\(I_{n}\) 的左端点为 \(a_{n}, b_{n}\),则 \(I^{'}_{n}\) 的左右端点为 \(a_{n} + t, b_{n} + t\),则:

\[\sum\limits^{\infty}_{n=1} l(I_{n}) = \sum\limits^{\infty}_{n=1} (b_{n} - a_{n}) = \sum\limits^{\infty}_{n=1} l(I^{'}_{n}) = \sum\limits^{\infty}_{n=1} (b^{'}_{n} - a^{'}_{n}) = \sum\limits^{\infty}_{n=1}\big( (b_{n} + t) - (a_{n} + t) \big)
\]

并且,如果 \(A \subset \bigcup\limits^{\infty}_{n=1}I_{n}\),则

\[\forall a \in A: ~ a \in \bigcup\limits^{\infty}_{n=1} I_{n} ~ \implies ~ \forall a \in A: ~ \exists n_{0} \in \mathbb{N}^{+}: ~ a \in I_{n_{0}}\\
\implies ~ \forall a \in A: ~ \exists n_{0} \in \mathbb{N}^{+}: ~ a + t \in I^{'}_{n_{0}} ~ \implies ~ \forall a \in A: ~ a + t \in \bigcup\limits^{\infty}_{n=1}I^{'}_{n}
\]

又因为:

\[a \in A \quad \iff \quad a + t \in A + t
\]

则:

\[\forall a + t \in A + t: ~ a + t \in \bigcup\limits^{\infty}_{n=1} I^{'}_{n} \quad \implies \quad A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n}
\]

反之可证:若 \(A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n}\),则 \(A \subset \bigcup\limits^{\infty}_{n=1} I_{n}\), 则:

\[\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\} = \left\{ \sum\limits^{\infty}_{n=1} l(I^{'}_{n}): ~ I^{'}_{n} \mbox{ 为区间, } A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n} \right\}
\]

所以二者下确界也相等,所以:

\[\forall A \subset \mathbb{R}: ~ \forall t \in \mathbb{R}: ~ m^{*}(A) = m^{*}(A + t)
\]